INTERSTATE 5 COLUMBIA RIVER CROSSING

DRAFT - Troutdale Sole Source Aquifer Technical Report

Columbia River CROSSING

August 2009
Title VI
WSDOT ensures full compliance with Title VI of the Civil Rights Act of 1964 by prohibiting discrimination against any person on the basis of race, color, national origin or sex in the provision of benefits and services resulting from its federally assisted programs and activities. For questions regarding WSDOT’s Title VI Program, you may contact the Department’s Title VI Coordinator at (360) 705-7098.

Americans with Disabilities Act (ADA) Information
If you would like copies of this document in an alternative format – large print, Braille, cassette tape, or on computer disk, please call (360) 705-7097. Persons who are deaf or hard of hearing, please call the Washington State Telecommunications Relay Service, or Tele-Braille at 7-1-1, Voice 1-800-833-6384, and ask to be connected to (360) 705-7097.

Reasonable accommodations in Oregon call: (503) 731-3490.

¿Habla usted español? La informacion en esta publicación se puede traducir para usted. Para solicitar los servicios de traducción favor de llamar al (503) 731-3490.
Cover Sheet

Interstate 5 Columbia River Crossing

DRAFT - Troutdale Sole Source Aquifer Technical Report

Submitted By:

Eric Roth, RG, LHG

Signature

Date

August 2009
This page intentionally left blank.
Table of Contents

Executive Summary ... ES-1

1. **Introduction** ... 1-1
 1.1 Background ... 1-1
 1.2 Purpose ... 1-3
 1.3 Objectives ... 1-3
 1.4 Study Area .. 1-3
 1.4.1 Boundary Description ... 1-4

2. **Columbia Crossing Project Description** .. 2-1
 2.1 Project Benefits ... 2-1
 2.2 Project Elements ... 2-2
 2.2.1 Crossing .. 2-2
 2.2.2 Highway and Interchanges .. 2-2
 2.2.3 Light Rail Alignment .. 2-2
 2.2.4 Light Rail Stations and Park-and-Rides 2-3
 2.2.5 Bus Improvements ... 2-3

3. **Geologic and Hydrologic Setting** ... 3-1
 3.1 Tectonic Setting .. 3-1
 3.2 Topography ... 3-1
 3.3 Fluvial Setting ... 3-1
 3.4 Stormwater .. 3-2
 3.4.1 Existing Stormwater Drainage System 3-2
 3.5 Geologic Units .. 3-5
 3.5.1 Artificial Fill (Qaf) .. 3-5
 3.5.2 Alluvium (Qal) ... 3-5
 3.5.3 Catastrophic Flood Deposits (Qff/Qfc) 3-5
 3.5.4 Troutdale Formation (Tt) .. 3-7
 3.5.5 Sandy River Mudstone (Tsr) .. 3-7
 3.5.6 Miocene and Older Rocks ... 3-7
 3.6 Hydrogeologic Setting .. 3-7
 3.7 USA and TGA .. 3-10
 3.7.1 Hydrologic Characteristics .. 3-10
 3.7.2 Groundwater Flow ... 3-12
 3.7.3 Beneficial Groundwater Use .. 3-22
 3.7.4 Critical Aquifer Recharge Area Designation 3-24
 3.7.5 Groundwater Quality ... 3-25

4. **Construction Activities Within the Study Area** 4-1
 4.1 Crossing Construction .. 4-1
 4.1.1 Bridge Design, Construction, and Timing 4-1
 4.1.2 Crossing Construction Timeline and Sequencing 4-2
 4.1.3 Proposed Crossing Construction Methods 4-3
 4.2 Highway, Interchange, and Bridge Construction 4-4
 4.3 Transit Construction ... 4-5
 4.4 Driven Pile and Drilled Shafts ... 4-7

*Table of Contents
August 2009*
Table of Contents
August 2009
Appendices

APPENDIX A: Basis of Action
APPENDIX B: Environmental Data Resources Area Study Database Search Results CD-ROM
This page intentionally left blank.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Area of Potential Impact</td>
</tr>
<tr>
<td>bgs</td>
<td>below ground surface</td>
</tr>
<tr>
<td>BMP</td>
<td>best management practices</td>
</tr>
<tr>
<td>BRT</td>
<td>Bus Rapid Transit</td>
</tr>
<tr>
<td>CMMP</td>
<td>Contaminant Media Management Plan</td>
</tr>
<tr>
<td>COV</td>
<td>City of Vancouver</td>
</tr>
<tr>
<td>CPU</td>
<td>Clark Public Utilities</td>
</tr>
<tr>
<td>CRBG</td>
<td>Columbia River Basin Group</td>
</tr>
<tr>
<td>CRC</td>
<td>Columbia River Crossing</td>
</tr>
<tr>
<td>C-TRAN</td>
<td>Clark County Public Transportation Benefit Area</td>
</tr>
<tr>
<td>CU 1</td>
<td>Confining Unit 1</td>
</tr>
<tr>
<td>CU 2</td>
<td>Confining Unit 2</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>DEIS</td>
<td>Draft Environmental Impact Statement</td>
</tr>
<tr>
<td>EDR</td>
<td>Environmental Data Resources</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FHWA</td>
<td>Federal Highway Administration</td>
</tr>
<tr>
<td>FTA</td>
<td>Federal Transit Administration</td>
</tr>
<tr>
<td>gpd/ft</td>
<td>gallons per day per foot</td>
</tr>
<tr>
<td>gpm</td>
<td>gallons per minute</td>
</tr>
<tr>
<td>GPTIA</td>
<td>Groundwater Pump and Treat Interim Action</td>
</tr>
<tr>
<td>HASP</td>
<td>Health and Safety Plan</td>
</tr>
<tr>
<td>HRM</td>
<td>Highway Runoff Manual</td>
</tr>
<tr>
<td>I-5</td>
<td>Interstate 5</td>
</tr>
<tr>
<td>IRA</td>
<td>Interim remedial action</td>
</tr>
<tr>
<td>IWG</td>
<td>in-water work window</td>
</tr>
<tr>
<td>LPA</td>
<td>Locally Preferred Alternative</td>
</tr>
<tr>
<td>LRT</td>
<td>Light Rail Transit</td>
</tr>
<tr>
<td>MTC</td>
<td>Model Toxics Control Act</td>
</tr>
<tr>
<td>MTDL</td>
<td>Maximum Total Daily Limit</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic & Atmospheric Administration</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>ODOT</td>
<td>Oregon Department of Transportation</td>
</tr>
<tr>
<td>PCE</td>
<td>tetrachloroethylene</td>
</tr>
<tr>
<td>PGIS</td>
<td>pollution-generating impervious surface</td>
</tr>
<tr>
<td>REC</td>
<td>recognized environmental condition</td>
</tr>
<tr>
<td>RTC</td>
<td>Regional Transit Commission</td>
</tr>
<tr>
<td>SAP</td>
<td>Sampling and Analysis Plan</td>
</tr>
<tr>
<td>SCPPP</td>
<td>Spill Control and Prevention Plan</td>
</tr>
<tr>
<td>SDWA</td>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>SGA</td>
<td>Sand and Gravel Aquifer</td>
</tr>
<tr>
<td>SR 14</td>
<td>State Route 14</td>
</tr>
<tr>
<td>SR 500</td>
<td>State Route 500</td>
</tr>
</tbody>
</table>

Acronyms
August 2009
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWMP</td>
<td>Stormwater Management Plan</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>TDA</td>
<td>Threshold Drainage Area</td>
</tr>
<tr>
<td>TDM</td>
<td>Transit Demand Management</td>
</tr>
<tr>
<td>TGA</td>
<td>Troutdale Gravel Aquifer</td>
</tr>
<tr>
<td>TSA</td>
<td>Troutdale Sand Aquifer</td>
</tr>
<tr>
<td>TSM</td>
<td>Transit System Management</td>
</tr>
<tr>
<td>TSSA</td>
<td>Troutdale Sole Source Aquifer</td>
</tr>
<tr>
<td>USA</td>
<td>Unconsolidated Sedimentary Aquifer</td>
</tr>
<tr>
<td>USACE</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>USDOT</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geologic Survey</td>
</tr>
<tr>
<td>VMC</td>
<td>City of Vancouver Municipal Code</td>
</tr>
<tr>
<td>VOCs</td>
<td>volatile organic compounds</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WS</td>
<td>Water Station</td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington State Department of Transportation</td>
</tr>
</tbody>
</table>
Executive Summary

The Troutdale Sole Source Aquifer (TSSA) constitutes the primary supply of drinking water to, and provides a significant economic resource for, the City of Vancouver and the greater Clark County area. Because of its importance, the U.S. Environmental Protection Agency (EPA) requested that information be gathered regarding potential future impacts to the TSSA from the Columbia River Crossing project (CRC). Specifically, EPA is concerned with the potential for exacerbation of contamination into the TSSA from CRC construction activities.

The purpose of this report is to:

- Provide relevant and applicable information regarding: the hydrogeologic conditions and beneficial use of the TSSA; proposed subsurface project construction activities; and identified hazardous material sites which could act as contaminant sources.
- Evaluate potential adverse effects to the TSSA as a result of project construction activities.
- Recommend mitigation measures to help ensure the TSSA is protected during project construction.

Findings

The Unconsolidated Sedimentary Aquifer (USA) and the Troutdale Gravel Aquifer (TGA) are the most accessible and most utilized sources of groundwater in the TSSA. Groundwater in these units is thought to discharge locally to the Columbia River and to Burnt Bridge Creek. Within the study area the City of Vancouver extracts groundwater for drinking water from the USA at Water Stations (WS) WS-1 and WS-3. Groundwater at these stations is treated to meet drinking water quality standards. Groundwater in the study area is also utilized locally for industrial and agricultural purposes.

Proposed project construction within the study area is composed of five general bridge areas: the Columbia River Crossing Bridge, the SR-14 Bridge, the Evergreen Bridge, the Mill Plain to 33rd Street Bridges, and the SR-500 and 39th Street Bridges. Significant below-grade construction activities for these bridge areas include: the installation of piles and shafts to support piers, foundations, and retaining walls; the excavation and grading of soil material to support roadways, transit, and utility corridors; and the installation of stormwater conveyance and management systems.

Search of federal and state regulatory environmental databases identified 122 potential hazardous material sites within the study area. Of these sites, 25 were determined to be higher priority sites because they had a known or suspected release of a hazardous substance or petroleum product. However, almost all of these higher priority sites had an inactive status or were granted a no further action determination by the Washington State
Department of Ecology (Ecology). In addition, an Ecology file review was conducted on
eight of the higher priority sites to gather further information on the nature and extent of
contamination. These sites were:

- Site ID No. 9, Boise Cascade White Paper
- Site ID No. 11, Hanna Motor Company
- Site ID No. 12, USDOT Federal Highway Administration
- Site ID No. 19, Vancouver Barracks
- Site ID No. 93, Department of Veterans Affairs
- Site ID No. 111, Washington Department of Transportation Maintenance Facility
- Site ID No. 120, Special Events and Convention Center

Evaluation of Potential Adverse Affects

Potential adverse effects to the TSSA were evaluated for each of the five bridge areas.
The evaluation took into consideration the type, intensity, and depth of construction; the
depth to groundwater; proximity to water supply wells, and the number and proximity of
higher priority hazardous material sites. Based on available information:

- A moderate rating for potential adverse effects was determined for the Columbia
 River Crossing, SR-14 Bridge, and the Mill Plain to 33rd Street Bridges, and
- A low rating for potential adverse effects to the TSSA was determined for the
 Evergreen Bridge and the SR-500 and 39th Street Bridge.
- A high rating for potential adverse effects was not determined because no
 recognized source of contamination was identified in proximity to proposed
 bridge areas.

Construction activities that could potentially exacerbate contamination or affect water
quality were evaluated. These include: drag down of contamination during pile
installation; the formation of conduits during pile installation; subsurface concrete work;
scour of contaminated sediments around piers; excavation work in contaminated soil or
sediment; and infiltration of stormwater in contaminated soil. Because no recognized
source of contamination was identified, the likelihood of contaminant exacerbation from
these activities is low. However, if contamination is encountered, then exacerbation of
contamination could be realized by one or all of these activities. The greatest likelihood
of exacerbation of contamination is thought to occur from drag down during drilling,
excavation work, and stormwater infiltration. As such, a series of mitigation measures are
recommended to help ensure the TSSA is protected from potential impacts from
construction activities.

Avoidance and Mitigation Measures

Recommended mitigation measures include:
• Conducting Phase I Environmental Site Assessments or equivalent on all properties that will be potentially acquired. Phase I activities may include, but are not limited to site inspection, interview with owner or manager, review of fire historic insurance maps, and environmental database search.

• Conducting Phase II Environmental Site Assessments on all properties that have been determined to have recognized environmental conditions identified during the Phase I assessments. Phase II activities may include, but are not limited to geophysical survey, asbestos and lead survey, environmental sampling and analysis of effected media. Information from the Phase II assessments will be used to help implement an avoidance strategy or conduct site cleanup.

• Conducting focused environmental assessments in areas where significant construction activities will occur or where stormwater facilities will be placed. Focused assessments may include collection of reconnaissance soil, sediment and/or groundwater samples to characterize subsurface conditions. Information from the focused assessments will be used to help implement an avoidance strategy or conduct cleanup prior to construction or apply engineering controls.

• Prepare and implement a Contaminated Media Management Plan (CMMP) to properly characterize, manage, store, and dispose of contaminated waste generated by construction activities including but not limited to dredging, drilling, and excavation work.

• Treatment and monitoring of drinking water supply wells. In the event that contaminant exacerbation occurred, groundwater at water stations (WS) WS-1 and WS-3 is currently treated for microbiological constituents by chlorination, and groundwater at WS-1 is treated for volatile organic compounds by aeration. Groundwater at these stations is monitored to ensure that water quality meets drinking water standards.

• Implement an approved Spill Control and Prevention Plan (SCPP) during construction.

• Implement construction stormwater pollution prevention and erosion control plans (SWPPPs) and obtain an approved NPDES general construction stormwater permit.

• Update permanent stormwater conveyance system and treatment facilities. Existing stormwater conveyance system has limited ability to control flow and treat stormwater from pollutant generating impervious surfaces (PGIS) associated with roadways and bridges. Updates and modifications to the stormwater conveyance system will improve stormwater quality generated from PGIS. Improved stormwater quality is thought to help improved surface water and groundwater quality overtime.
1. Introduction

This section presents the purpose and objectives of the report. It also provides project background, the basis for taking action, and a description of the study area.

1.1 Background

A sole source aquifer is defined by the U.S. Environmental Protection Agency (EPA) as "an aquifer or aquifer system which supplies at least 50 percent of the drinking water consumed to the area overlying the aquifer and for which there is no alternative source or combination of drinking water sources which could physically, legally and economically act to supply those dependent upon the aquifer" (EPA 2006). The EPA designated the Troutdale Aquifer System as a sole source aquifer (TSSA), Clark County, Washington, in July 2006 (EPA 2006) (see Exhibit 1-1).

EPA requested that additional information be gathered regarding potential impacts to the TSSA as a result of short-term construction activities from the Interstate 5 Columbia River Crossing project (CRC). This request was made to the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA) in a letter dated July 1, 2008 (see Appendix A). EPA was particularly interested in 1) the potential exacerbation of contaminants from future pile driving activities in areas potentially containing contaminated sediments, soils or groundwater; and 2) significant below-grade construction activities in areas in proximity of known or suspected hazardous materials sites (EPA 2008).

EPA’s inquiry is based on their review of the Draft Environmental Impact Statement (DEIS) and Draft Section 4(f) Evaluation in accordance with the National Environmental Policy Act (NEPA). Specifically, EPA found that the DEIS had limited information on groundwater in the federally designated TSSA within the project area.

The Safe Drinking Water Act states that:

“...no commitment for federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the [EPA] Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a commitment for federal assistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer.”

As part of the NEPA review process, EPA rated the each of its alternatives in the DEIS as an EC-2. This rating indicates that environmental concerns and insufficient information were identified.
1.2 Purpose

The purpose of this report is to evaluate potential adverse impacts to groundwater resources in the TSSA as a result of short-term construction activities associated with the CRC project, and to provide mitigation strategies to help ensure the protectiveness of the TSSA during construction.

1.3 Objectives

The objectives of this report are to:

- Define the study area (Section 1)
- Describe the physical, geological, and hydrological setting of the TSSA (Section 3)
- Describe and discuss significant subsurface construction activities (Section 4)
- Summarize information on environmental impacts from identified hazardous material sites within the study area (Section 5)
- Evaluate potential adverse affects to the TSSA resource from construction activities associated with bridge structures (Section 6)
- Provide potential mitigation measures to help ensure protectiveness of the TSSA (Section 7)

Adverse effects to the TSSA are considered effects from construction that would diminish groundwater quality, or alter the physical characteristics of the groundwater resource.

This report does not take the place of relevant sections in the Final Environmental Impact Statement (FEIS) or applicable technical reports. However, as recommended by EPA, background information and findings from this evaluation will be incorporated into these reports to the extent practical.

The analysis, conclusions, and recommendations in this evaluation are based on existing geologic and hydrogeologic information, data provided in current environmental databases, and the proposed design for the Columbia River Crossing and other structures associated with the bridge replacement.

1.4 Study Area

Establishing a study area is necessary because it places constraints on the active area in which the evaluation will be conducted. The study area encompasses the Locally Preferred Alternative (LPA) and Area of Potential Impact (API) for the CRC Project.1

1 The Area of Potential Impact (API) defines the area most likely to have direct impacts from construction and operation of the CRC project. The API is based on the designs of the alternatives evaluated in the DEIS. This area
The lateral boundaries of the study area are displayed in Exhibit 1-2. For the purposes of this report the lateral boundaries of the study area are based on identified internal hydrologic boundaries within the TSSA system. The use of hydrologic boundaries places constraints on the extent of groundwater resources that could be potentially impacted by construction activities. As such, groundwater resources outside of the study area are less likely to be affected by construction activities than those within the study area. Further discussion on internal hydrologic boundaries is presented in Section 3.5.

1.4.1 Boundary Description

The southern hydrologic boundary of the study area is the centerline of the Columbia River, as defined by TSSA designation. The northern boundary of the study area is Burnt Bridge Creek drainage, an established local groundwater drainage boundary at the northern extent of the project improvement. The eastern and western hydrologic boundaries of the study area are local flow divides identified using published simulated groundwater flow modeling (Parametrix 2008)(Parametrix and S.S. Papadopulos 2008). The eastern and western flow divides result from the City of Vancouver municipal Water Stations (WS) WS-1 and WS-3. WS-1 and WS-3 consists of several high-yielding, large-diameter water supply wells completed in the TSSA (see Exhibit 1-2).

The vertical boundary of the study area is the contact between the upper and lower sedimentary subsystems. The upper sedimentary subsystem is comprised of the Unconsolidated Sedimentary Aquifer (USA) and the underlying Troutdale Gravel Aquifer (TGA). The basis of this vertical boundary is that the USA and TGA provide a majority of the groundwater beneficial use within the study area, and that project construction activities are not anticipated to encounter the lower sedimentary subsystem. Further discussion is presented in Section 3.5 of the hydrologic characteristics and beneficial groundwater use of the TSSA.

Note: Data from the U.S. Geological Survey indicates that groundwater discharges into Burnt Bridge Creek suggest that it is a discharge boundary (U.S. Geological Survey, 1990). However, Burnt Bridge Creek drainage does not likely intercept all groundwater flow within the TSSA, and should only be considered a local boundary condition.

extends five miles from north south between the I-5/Main Street interchange in Vancouver and the I-5 Columbia Boulevard interchange in North Portland. North of the river, the API extends west into downtown Vancouver, and east near Clark College to include potential transit alignments and park and ride locations. Around the actual river crossing, the eastern and western sides each extend 0.25 mile from the I-5 right-of-way. South of the river crossing, this width narrows to 300 feet on each side of I-5.
2. Columbia Crossing Project Description

The Columbia River Crossing (CRC) project is a bridge, transit, and highway improvement project proposed by the Oregon and Washington Departments of Transportation (ODOT and WSDOT), Southwest Washington Regional Transportation Commission (RTC), Metro, Clark County Public Transportation Benefit Area (C-TRAN), and Tri-County Metropolitan Transportation District (TriMet) to improve safety and mobility in the I-5 corridor between Portland, Oregon, and Vancouver, Washington.

This project seeks to improve safety, reduce congestion, and increase mobility of motorists, freight, transit riders, bicyclists, and pedestrians along a 5-mile section of the I-5 corridor connecting Vancouver, Washington, and Portland, Oregon. The project area stretches from State Route 500 (SR 500) in northern Vancouver, south through downtown Vancouver and over the I-5 bridges across the Columbia River to just north of Columbia Boulevard in north Portland.

A Draft Environmental Impact Statement (DEIS) was published on May 2, 2008, evaluating four alternatives and a No Build alternative. The four alternatives included highway improvements throughout the project corridor, either a replacement crossing or a supplemental bridge and improvements to the existing bridges, and either bus rapid transit or light rail through the project area. These alternatives also included the option to toll the I-5 bridges.

Following the publication of the Draft EIS, the local agencies sponsoring the CRC project adopted a locally preferred alternative (LPA). Each of these agencies’ elected or appointed boards/councils held separate public hearings and ultimately voted to adopt a replacement bridge and light rail as the LPA. C-TRAN, the City of Vancouver, and RTC also specified the Clark College terminus as the preferred location to end the light rail alignment.

This regional consensus was informed by the environmental, financial, and engineering analysis presented in the DEIS, and on public and agency input.

2.1 Project Benefits

Project benefits are expected to include:

- No bridge lifts,
- Less congestion,
- Improved freight mobility,
- Fewer collisions,
- More travel choices and community connections,
Improved facilities and connectivity for pedestrians and bicyclists,
Stormwater treatment, and
Seismic improvements

2.2 Project Elements

Following is a description of the key elements of the LPA. Section 4 provides information about the construction of the CRC project.

2.2.1 Crossing

Two new bridges positioned downstream (west of) the existing bridges would accommodate I-5 traffic: one northbound with an incorporated multi-use (bicycle/pedestrian) path, and one southbound with the light rail below the bridge deck. The new bridges would carry three through-travel lanes and up to three auxiliary lanes for entering and exiting the highway in each direction. The structures would be approximately 99 feet wide each, and the gap between the structures would be approximately 15 feet. The length of the new bridges would be approximately 2,700 feet over the Columbia River. The existing bridges would be removed once the new bridges are opened to traffic.

The height of the new bridges must accommodate both river traffic below and flights from Pearson Field above. The top of deck of the new bridge will range in elevation from 100 to 135 feet North American Vertical Datum 1988 (NAVD88) over the Columbia River. The new structures over the Columbia River would not include lift-spans.

Five new bridge structures will replace the existing two structures over North Portland Harbor. Starting from the east, these structures would carry northbound I-5 and a collector-distributor ramp, southbound I-5 and a collector-distributor ramp, and Light Rail Transit (LRT) combined with a multi-use path. The total width of these structures would be between 300 and 450 feet. The length of each structure would range between 800 and 1,000 feet, depending on its location and skew relative to the channel.

2.2.2 Highway and Interchanges

Interchanges within the 5-mile project area would be improved for safety and mobility through significant rebuilding, including moving or improving highway connections, adding auxiliary lanes, and lengthening on- and off-ramps. The following interchanges (from north to south) would be improved: Victory Boulevard, Marine Drive, Hayden Island/Jantzen Beach, State Route 14 (SR 14)/City Center, Fourth Plain, Mill Plain, and SR 500. Construction of interchanges and bridges will require widening of I-5.

2.2.3 Light Rail Alignment

Light rail would extend from the Expo Center MAX Station in Portland to a station and park-and-ride at Clark College in Vancouver. The alignment on Hayden Island would be adjacent to I-5. After crossing over the Columbia River under the deck of the southbound I-5 bridge, LRT would touch down in downtown Vancouver on Washington Street.
around the intersection at 4th Street. At 7th Street, the alignment would split into a
couplet, with southbound trains using Washington and northbound transit traveling on
Broadway. At McLoughlin Boulevard, the light rail alignment would become two-way,
travel under I-5, and connect to the terminus station at Clark College.

2.2.4 Light Rail Stations and Park-and-Rides

New light rail stations would be located on Hayden Island, in downtown Vancouver at
5th, 9th, and 15th Streets, and at the terminus at Clark College. Park-and-ride structures
would be located at Clark College, at East 15th and Washington Streets, and at the
SR 14/I-5 interchange.

2.2.5 Bus Improvements

The project includes future express and local bus systems that would expand access
between Vancouver and Portland. Express buses would continue to serve long-distance
commuter markets by providing direct access between Clark County and downtown
Portland during peak commute hours. Some local bus routes would be modified to
connect to the new light rail stations.